
Using SRX standard for sentence segmentation in LanguageTool

Marcin Miłkowski, Jarosław Lipski

Polish Academy of Sciences,
Institute of Philosophy and Sociology

ul. Nowy Świat 72, 00-330 Warszawa, Poland
mmilkows@ifispan.waw.pl, loomchild@rootnode.net

Abstract
In this paper, we evaluate using the SRX (Segmentation Rules eXchange) standard for specifying sentence segmentation rules created
for a proofreading tool called LanguageTool. As proofreading tools are quite sensitive to segmentation errors, the underlying
segmentation mechanisms must be sufficiently reliable. Even though SRX allows only regular expressions as a means for specifying
sentence breaks and exceptions to those breaks, our evaluation shows that it is sufficient for the task, both in terms of the performance
of the algorithm used and correctness of results. Moreover, it offers interoperability with different tools, which in turn allows
maintaining consistent segmentation in a whole language-processing pipeline. Our rules are available on an open-source license
(LGPL), which also helped in receiving valuable community input from our users.

Keywords: segmentation, standards, computer-aided translation, grammar-checking

1. Introduction
Most natural language processing tasks such as syntactic
parsing, information extraction, machine translation,
bilingual sentence alignment, document summarization or
grammar checking, require that the input text first be
segmented into sentences before the higher-level
processing can be performed. At first, sentence
segmentation seems to be a straightforward process, at
least in languages in which certain punctuation marks,
such as a period, an ellipsis, a question mark and an
exclamation mark, are used to denote sentence
boundaries. Nevertheless, in many cases the period
occurs in an abbreviation, as a decimal point, in a date, or
in many other places and does not signal a sentence
break.1 Furthermore, the period can be used at the same
time as part of the abbreviation and as a sentence-end
mark when the abbreviation is the last word in the
sentence. Additionally, some abbreviations may have
exactly the same spelling as ordinary words at the end of
a sentence, and disambiguation of such cases of
homophony may be non-trivial without deeper semantic
analysis. Therefore, sentence segmentation can pose a
serious challenge for a computer.
In this paper we focus only on sentence segmentation of
the written text that includes punctuation. We measure
the performance of our system using two classical
metrics: recall and precision. Precision is the ratio of
correctly recognized sentence breaks to total sentence
breaks found by the system. Recall is the ratio of
correctly recognized sentence breaks to total actual
sentence breaks in the text.
Sentence segmentation algorithms can be divided into
two major classes: rule-based and statistical (Mikheev,
2003). Rule-based algorithms require manually prepared
set of rules, often specified in terms of regular
expressions. In these systems, the difficulty lies in
manually creating a good set of rules, which is time
consuming. Statistical algorithms employ machine
training techniques and treat segmentation as a

1 According to (Gale and Church, 1991) in the Brown
corpus 90% of the periods denote sentence break,
whereas in the Wall Street Journal only 53% do.

classification problem. The majority of these techniques
require a labelled corpus for supervised training (Palmer,
Hearst, 1997), while some of them can perform
unsupervised learning on a raw corpus (Schmid, 2000).
However, statistical algorithms do not offer
interoperability with different tools as there is no standard
way to exchange machine-learned information for
segmentation, and that limits the usage of such methods
to standalone applications that are not used in a complex
linguistic pipeline.
Sentence segmentation has applications that are not
equally sensitive to segmentation quality. Let us present
some of the examples, ordered by the ascending level of
sensitivity to correctness of segmentation.
• Information retrieval from a corpus. If search criteria
do not depend on sentence boundaries, segmentation has
no effect. Even if they do, segmentation quality has minor
impact on search quality and it is generally better to not
segment than to segment in unclear cases.2

• Bilingual sentence alignment. If segments are too
long, correct alignment may become impossible because
sentences are atomic units of this process. If the segments
are too short, it can be harder to find the correct
alignment because there are more degrees of freedom.
Generally, it is better to split too often than too seldom as
the alignment process can fix some segmentation errors
by mapping many sentences in one language to one
sentence in another language.
• Computer-Aided Translation (CAT) systems with
Translation Memory. Segmentation errors are not that
significant as long as segmentation rules used for the
input text are the same as those used for creation of
translation memory; otherwise, there will be fewer
matches or they will tend to be less accurate. Moreover,
in heterogeneous environments where translators use
different tools, the bilingual documents returned to a
central repository cannot be fully leveraged for future
translations by including them in the Translation Memory
if translators did not use the same segmentation.

2 Sometimes it is possible to limit search to one sentence
for example by using “within s” notation in Poliqarp
system (Przepiórkowski, 2004).

• Statistical machine translation. Corpus segmentation
quality is moderately important. If segmentation produces
too long sentences, for example by classifying
abbreviation as not ending the sentence, the word
alignment will be less accurate, as the complexity of this
task is directly related to sentence length. If segmentation
produces too short sentences, for example by not
recognizing an abbreviation, some word alignments can
be left unnoticed. However, as long as there are no major
word order differences in source and target sentences it is
better to segment than not to segment in unclear cases.
• Proofreading tools. Segmentation quality becomes
very important as soon as errors cause false positives for
proofreading tools in cases where linguistic error
detection depends on sentence breaks. In the proofreading
tool under consideration in this paper, LanguageTool3,
there are several such cases. First, there is a generic rule
for many languages that detects a lower case character at
the beginning of the sentence, and it can create a false
positive in case where an abbreviation was not detected
as such and the sentence was falsely segmented.
Additionally, for Polish, there are rules that detect two
clauses that are not linked with a punctuation mark nor
with a conjunction. In this case, not detecting a sentence
end can result in a false positive; it is usually the case
when an ordinary word is classified as an abbreviation.
In this paper, we focus on a rule-based approach to
sentence segmentation of written text in Polish and
English. Obviously both languages use punctuation for
signalling sentence breaks. The rules have been created
for LanguageTool and replaced our previous
segmentation algorithm. As the results obtained were
promising – both in terms of speed and accuracy – the
rules have been created by developers of other language
modules. At the time of writing of this paper, there are
also SRX rules for Dutch, Romanian, Russian, Slovak,
and Icelandic.

2. SRX standard
SRX (Segmentation Rules eXchange) standard (SRX,
2008) defines an XML vocabulary for describing the
rules used for breaking a text document into segments. In
other words, it is a formal notation that can be used by
various tools to specify segmentation rules, in particular
sentence-level segmentation. It was created as an addition
to TMX (Translation Memory eXchange) standard
(TMX, 2005) to enable interoperability between different
Translation Memory Management Systems. This is
achieved by exchanging segmentation rules along with
the translation memory, so input text can be segmented
the same way in different tools that use the standard. As a
side effect, SRX provides separation between the
segmentation algorithm and segmentation rules, which
enables non-programmers to improve the rules without
modifying the algorithm. This is why we could receive
direct input from translators who used our rules.

3 LanguageTool is an open-source rule-based
proofreading tool for English, German, Polish, Dutch,
and other languages that integrates with OpenOffice.org
suite. For more information see project homepage:
www.languagetool.org.

SRX file is divided into two parts. The first part,
represented by <languagerules> element, specifies the
segmentation rules. The second part, represented by
<maprules>, specifies which segmentation rules are
applied to which language.
To segment a text after a full stop, an exclamation mark
and a question mark but not segment it after “Mr.” in
English and “prof.” in Polish, language rules can be
defined as follows:
<languagerule
 languagerulename="Polish">
<rule break="no">
<beforebreak>\s[Pp]rof\.</beforebreak>
<afterbreak>\s</afterbreak>
</rule>
</languagerule>
<languagerule
 languagerulename="English">
<rule break="no">
<beforebreak>\sMr\.</beforebreak>
<afterbreak>\s</afterbreak>
</rule>
</languagerule>
<languagerule
 languagerulename="Default">
<rule break="yes">
<beforebreak>[\.\?!]+</beforebreak>
<afterbreak>\s+[A-Z]</afterbreak>
</rule>
<rule break="yes">
<afterbreak>\n</afterbreak>
</rule>
</languagerule>
Each language rule consists of one or more segmentation
rules, and each segmentation rule consists of two regular
expressions that must match the text before a break
position and after the break position for the rule to be
applied. Each segmentation rule has an attribute saying if
it is a break rule (break="yes") or exception rule
(break="no"). Regular expressions used in the rules must
conform to a subset of ICU4 regular expressions as
defined in SRX specification. Our implementation uses
the Java standard library regular expression engine which
supports almost everything required by SRX with a few
minor omissions5. The order of segmentation rules is
important as they are matched from first to last.
Continuing the previous example mapping rules can be
defined as follows:
<languagemap
 languagepattern="(PL|pl).*"
 languagerulename="Polish"/>
<languagemap
 languagepattern="(EN|en).*"

4 ICU is a set of C/C++ and Java open-source libraries
providing Unicode and globalization support for software
applications. For more information see project homepage:
http://site.icu-project.org.
5 In Java, there is no special behaviour of \b character
within a set and missing support for \Uhhhhhhhh and
\x{hhhh} constructs. As far as we know, currently all
tools supporting SRX standard are implemented in Java,
so their behaviour is the same as in our implementation.

 languagerulename="English"/>
<languagemap
 languagepattern=".*"
 languagerulename="Default"/>
Each language mapping consists of a language regular
expression to which language code is matched and a
language rule corresponding to it. Language codes are
defined in (RFC4646). As SRX supports the concept of
cascading, for Polish text identified by “pl” language
code both Polish language rule and Default language rule
will be merged and applied together. Language patterns
are matched and aggregated in appearance order.
To avoid confusion how to segment using these rules, the
following algorithm pseudocode is included in
specification's implementation notes:
for each inter-character text position
 for each rule in list
 if current rule matches
 inter-character position
 if rule specifies break
 break text here
 end if
 exit for
 end if
 next
next
To make the process more efficient, implementation we
used in Segment library6 differs from the above in that it
first matches break rules and searches for exception rules
only in potential break positions. In the worst case, our
algorithm performs the same as the above, but in a typical
scenario, when there are few break rules and many
exception rules, it performs much faster - observed speed
increase was more than tenfold for real-world scenario.
SRX standard is more complicated than outlined in this
section in that it allows formatting of the input text to be
preserved. In current implementation, we ignore the
formatting and treat input as plain text.

3. Disambiguation strategies
One of the difficulties with specifying segmentation rules
in SRX format is that it is limited to regular expressions
over surface strings. It is not possible to refer to part-of-
speech (POS) information, not only because
segmentation precedes POS tagging in most cases but
also due to the fact that SRX does not include any
provisions for additional linguistic information.
To maintain interoperability with other SRX-compliant
tools one should limit rules to what is offered by the
standard. In other words, though one could add additional
segmentation in later phases of linguistic processing to
enhance precision of the segmentation, any such addition
means that the SRX file will no longer be useful to
recreate the same sentence boundaries in linguistic data.
It is however not a critical limitation of the standard, as
experimental results show that regular expressions allow
sufficiently high precision and recall to be maintained.
Moreover, as SRX is offered for software packages that

6 Segment is an open-source tool used to split text into
segments according to rules stored in SRX file. For more
information see the project homepage:
http://sourceforge.net/projects/segment.

lack such resources as POS taggers, especially in
computer-aided translation, any such addition to the SRX
standard would make it much harder to implement in a
wide variety of tools.
In writing SRX rules, one faces two kinds of ambiguity:
(1) homophonic ambiguity between words and
abbreviations that end with a punctuation character; (2)
ambiguity between abbreviations that end the sentence
and those that do not. The Table 1 lists some such
homophones in Polish (see also Rudolf 2004 and Mazur
2005).

Abbreviation Expansion of
abbreviation

Ordinary word

farm. farmakologia farma (plural genitive)

gen. generał gen

im. imienia oni (plural dative)

jap. japoński japa (plural genitive)

klas. klasyczny klasa (plural genitive)

kop. kopiejka kopać (imperative)

lic. licencjat lico (plural genitive)

marsz. marszałek marsz

min. minister,
minuta,
minimum

mina (plural genitive)

muz. muzyczny muza (plural genitive)

par. paragraf para (plural genitive)

por. porównaj por

pot. potocznie pot

sen. senator, senior sen

tłum. tłumaczył tłum

ul. ulica ul

ust. ustęp usta (plural genitive)

żart. żartobliwie żart

żeń. żeński żenić się (imperative)
Table 1. Homophones in abbreviations for Polish.

Additionally, abbreviations may be created ad hoc in a
given text. This means that the class of abbreviations in a
language is always open. Yet, as (Mazur 1996) observes,
in many languages abbreviations do differ in their surface
form from other words; for example, in Polish,
abbreviations may contain no vowels in contradistinction
to ordinary words. By using this information, one may
devise a simple heuristic rule that any lower case string of
alphabetic consonants is an abbreviation. Another
heuristic is that a sequence of single characters with dots
(such as “U. S. A.”) is an unbreakable abbreviation (it
can, however, end the sentence).
Polish spelling rules require that a dot be placed only
after such abbreviations that end with the same character
as the word being abbreviated. This knowledge is

unavailable during segmentation for newly made
abbreviations, which again makes the second ambiguity
problem harder.
There are several linguistic strategies that can be used to
tackle the ambiguities. First of all, it could seem that the
easiest strategy to deal with dot-ended abbreviations
would be to create a long list of all of them. The strategy
is however flawed if this results with more ambiguities
between words and abbreviations. For example, the
abbreviation “klas.” (klasyczny [classical]) is a
homophone of “klas” (plural genitive of klasa [class]),
yet the second word is much more frequently used in
Polish than the abbreviation. In this case, better results
could be achieved by removing “klas.” from the
abbreviation list. In other words, it is better to limit the
abbreviation list to the ones which are actually often used
and do not tend to be ambiguous. And ambiguity can be
resolved using heuristics based on the following
observations.
There are several categories of abbreviations. Some
abbreviations may occur either in the middle or at the end
of the sentence. In such a case, in many languages the
character case may be used as a source of information: if
there is no upper case character followed by a lower case
character after the dot (“...abc. Abc...”), probably the
sentence ends with an abbreviation. Or, in a worse case,
the next word is a German noun or a proper noun.
Not all words and abbreviations may occur at the
sentence end. For example, personal titles in English,
such as “Dr.” or “Mr.”, are most often followed by proper
names.
Some abbreviations precede only certain kinds of strings.
For example, a Polish abbreviation “ust.” (meaning
“ustęp” [clause]) is used in legal contexts only before
Arabic numbers larger than 0 and smaller than 100 (the
upper bound is a heuristic, though in principle one could
have a legal contract that contains an article with a
hundred of internal clauses, or more). In contrast, the
word “ust” (genitive of “usta” [lips]) is hardly followed
by a number. (In general, numbers rarely start sentences,
if not used in tables and similar contexts.)
Some abbreviations occur frequently in the same surface
patterns as groups. For example, abbreviations of
personal titles are written in the same order (“prof. dr”,
and not “dr prof.”). In general, as abbreviations are
characteristic for more official registers, they also belong
to more formulaic language. One may therefore easily get
collocation information from corpora.
Some abbreviations that should not end with a dot,
according to official spelling rules, are actually frequently
misspelled with a dot. Detecting such a blunder in
LanguageTool would be impossible if they were not
included in segmentation rules, so one should take special
care to list them among abbreviations that never end the
sentence (if they actually never do). In Polish, this
includes abbreviations such as “wg”, “dr” or “nr”.
A special category of abbreviations are initials, or upper
case alphabetic characters with a dot (or one upper case
and one lower case character, for example “St” in Polish
for “Stanisław”). They always precede other initials or
upper case words. Yet, as single-letter abbreviations
rarely end a sentence, this can be used to enhance
segmentation quality. For example, in Polish, only three

one-character abbreviations seem to occur at the sentence
end: “r.” (rok [year]), “s.” (strona [page]), “n.” (następny
[next]), and they are all lower case7.
Preceding punctuation marks can also be used to
disambiguate between abbreviation kinds: if an
abbreviation is used in parentheses, the dot cannot be
used to end the sentence (for example, “(gr.)”). Similarly,
“tłum.” (tłumaczył [translated by]) is usually preceded
with a comma, and its homophone “tłum” (crowd)
usually not.
Additionally, white space can indicate whether the dot is
used as a sentence break. Dots used inside dates in
German and Polish (“12.10.1995”) are not followed by
any white space. The same is true for dots in URLs
(“www.languagetool.org”).
All these strategies cannot guarantee correct results in all
possible cases. For example, a potential sentence-
breaking abbreviation may be followed by a proper noun.
It is hardly possible to create a rule that would deal with
such a case properly, as the information required to
disambiguate is of the semantic or even pragmatic nature.
(Rudolf, 2000) cites such a hard example: “Jednym z
najtrwalszych dzieł młodej królowej było odnowienie
przez nią w 1387 r. Akademii Krakowskiej, założonej
jeszcze w 1364 r. przez Kazimierza Wielkiego, która
jednak upadła po jego śmierci.” [One of the most durable
achievements of the young queen was to renew the
Academy of Cracow in 1387, which was already
established in 1364 by Kasimir the Great but fell into
decay soon after his death].
Our SRX rules cut the sentence after “1387 r.”, which is
hardly correct for semantic reasons. We think, however,
that it is inevitable in machine-created segmentation.
On a limited scale, one might be tempted to use a lexicon
with part-of-speech information to create a regular
expression that would allow to make a limited reference
to parts-of-speech just by enumerating frequent words
with a standard regular-expression disjunction (word1|
word2|word3). In LanguageTool, the POS tagger used
later in the processing is implemented as a finite-state
machine, so in principle, one could translate any piece of
information from the tagger to a regular expression. Yet,
performance limitations of regular expression processing
(large disjunctions are known to introduce serious
performance penalty) make this translation less feasible a
solution. For that reason, we did not try to implement a
“poor-man's POS tagger” in SRX this way.

4. Results for English and Polish
Initial SRX rules we used were based on rules created for
LanguageTool. These rules were also built using regular
expressions but hard-coded in Java and therefore harder
to maintain than a SRX file. The old algorithm was also
more than three times slower than the current, generic
one implemented in Segment library8. These rules were

7 Note that in technical language, one may use initials for
enumeration or in technical terms, such as “part A” or
“kinase B” (see below for information on problems with
GENIA corpus). In those cases, this heuristic rule breaks.
8 Segment was able to split about 2500 Polish sentences
(330000 characters) per second on an old, single core
1GHz processor computer which proved sufficient for us.

subsequently enriched with additional heuristics. As a test
corpus, we used the GENIA molecular biology corpus
with manually created and verified segmentation marks
(Kim et al. 2003). For the GENIA corpus, we assumed
that the original manual segmentation is always correct.
The recall rate was 99.10%, and precision 94.34%.
Manual review of results has shown that in the GENIA
corpus, there are high numbers of technical terms such as
“kinase B” that tend to end sentences, and our rules
assumed that single letters can never end a sentence. It
must be remembered, however, that the GENIA corpus is
a specialized corpus and for literary text the precision
may be actually higher.
For Polish, however, there is no corpus with manually
verified sentence end markers. To evaluate the rules, we
used the Frequency Dictionary Corpus9. However, the
corpus contains errors that can heavily influence the
performance of rules. Although the original corpus was
proofread, it was also automatically converted to encode
Polish characters (early versions of the computer
representation of the corpus could not encode them
properly), and due to the automatic conversion and
transliteration of old data, all Polish diacritical characters
at the sentence beginnings are now lower case. Also, all
characters following the question and exclamation marks
are lower case, whether they end the sentence or not. All
these errors were artificially introduced by using a Perl
script (Nazarczuk, 1997). For that reason, we used two
versions of the corpus: raw and cleaned (using
LanguageTool standard uppercase-sentence start rule and
adding a missing dot to complete sentences). Yet, the
differences seem to be not too significant: the recall is
97%, and precision 99.7548% for the raw corpus; the
edited version has the same recall but precision is slightly
lower (99.7525%). As the original corpus was not
evaluated manually and contains segmentation errors, the
lower precision rate may be actually misleading in the
latter case. All in all, we think that the differences are
insignificant.
As the above results show, by using regular expressions
over surface tokens, one can achieve quality which is
sufficient for practical applications. SRX standard
simplifies maintaining and implementing the rules,
though the overall quality of segmentation clearly
depends on the linguistic knowledge embedded in the
heuristics used.

5. Conclusions
SRX standard has its limitations but offers
interoperability with other tools. Interoperability means
also that the rules of segmentation can be easily enhanced
and extended by users. This was the case of the current
set of rules; CAT tools such as Swordfish, though already
containing quite extensive rule sets, benefit from using
better segmentation. We received valuable input from the
community of translators who added some of the missing
but common abbreviations and are interested in extending
the linguistic coverage of our segmentation file.
In LanguageTool, correct segmentation is crucial for
avoiding false positives that would greatly reduce

9We have used the proofread version, available at
http://www.mimuw.edu.pl/polszczyzna/pl196x/.

usability of the grammar checker. We could add special
sentence-breaking rules on a higher level of linguistic
analysis that allows using such mechanisms as part-of-
speech tagging and unification for disambiguating
particularly hard cases. Though strict interoperability in
terms of keeping the consistence of segmentation is not
so important for us, as LanguageTool output is not used
to create further linguistic resources, we think that
community feedback is so valuable that we do not want
our extensions to become incompatible with other tools.
Moreover, for Polish, as it seems, we already achieved
such high precision that the economic law of diminishing
returns applies: the work spent at making the rules perfect
cannot result in dramatic improvement. There is more
room for improvement in the English rules and this is
where we will turn our attention.

References
Gale, W.A. Church, K.W. (1991) A Program for Aligning

Sentences in Bilingual Corpora. Meeting of the
Association for Computational Linguistics.

ICU. http://site.icu-project.org.
Kim, J., T. Ohta, Y. Teteisi and J. Tsujii. (2003). GENIA

corpus - a semantically annotated corpus for bio-
textmining. Bioinformatics. 19 (suppl.1) (pp. i180-
i182).

LanguageTool. http://www.languagetool.org.
Mazur, P.P. (2005). Text segmentation in Polish. 5th

International Conference on Intelligent Systems Design
and Applications (pp. 43-48).

Mikheev, A. (2003). Text segmentation. The Oxford
handbook of Computational Linguistics (pp. 201-218).
Oxford University Press.

Nazarczuk, M. (1997). Wstępne przygotowanie korpusu
Słownika frekwencyjnego polszczyzny współczesnej
do dystrybucji na CD-ROM. Praca magisterska
napisana pod kierunkiem dra hab. Janusza S. Bienia.
Warszawa.

Palmer, D. D. Hearst, M. A. (1997). Adaptive
multilingual sentence boundary disambiguation.
Computational Linguistics 23(2) (pp. 241-269).

Przepiórkowski, A. (2004). The IPI PAN Corpus:
Preliminary version. IPI PAN, Warszawa.

RFC4646. Tags for Identifying Languages. Internet
Engineering Task Force.
http://www.ietf.org/rfc/rfc4646.txt.

Rudolf, M. (2004). Metody automatycznej analizy
korpusu tekstów polskich. Uniwersytet Warszawski,
Warszawa.

Schmid, H. (2000). Unsupervised learning of period
disambiguation for tokenization. Internal Report.
University of Stuttgart.

Segment. http://sourceforge.net/projects/segment.
SRX (2008). SRX 2.0 Specification. The Localization

Industry Standards Association.
http://www.lisa.org/fileadmin/standards/srx20.html.

TMX (2005). TMX 1.4b Specification. The Localization
Industry Standards Association.
http://www.lisa.org/tmx/tmx.htm.

